URN: http://vtn.chdtu.edu.uaurn:2306:44553.2019.178235

DOI: https://doi.org/10.24025/2306-4412.3.2019.178235

СОРБЦИЯ СУЛЬФАНИЛОВОЙ КИСЛОТЫ И ИОНОВ МЕДИ АКТИВИРОВАННЫМ УГЛЕМ, МОДИФИЦИРОВАННЫМ ОКСИДАМИ МЕТАЛЛОВ

Ирина Владимировна Косогина, Наталья Аркадиевна Клименко, Людмила Андреевна Савчина, Светлана Александровна Кирий, Игорь Михайлович Астрелин, Елена Александровна Самсони-Тодорова

Анотація


Исследован процесс сорбции сульфаниловой кислоты и ионов меди модифицированным и немодифицированным активированным углем Filtrasorb 300 (АУ F300). Определены структурно-сорбционные характеристики исследованных материалов: статическая обменная катион-ная и анионная емкости и количество поверхностных групп (карбоксильные, лактонные, фенольные). Показан положительный эффект модификации активированного угля оксидами металлов, полученными в результате кислотно-термической обработки «красного шлама». Наличие отрицательно заряженных активных центров на поверхности модифицированного активированного угля позволяет повысить на 59 % величину адсорбции сульфаниловой кислоты за счет взаимодействия поверхности материала с аминогруппой кислоты при отсутствии ионов меди в растворе, что на 24 % больше, чем на АВ F300. Одновременное присутствие ионов меди и сульфаниловой кислоты уменьшает их адсорбцию на модифицированном сорбенте в результате блокировки активных групп и снижения электростатического взаимодействия. Установлено, что при низких значениях рН среды имеет место, вероятнее всего, комплексообразование ионов меди с молекулой сульфаниловой кислоты по группе – NH2, при условии значительного превышения содержания ионов меди в растворе. Подтверждена возможность использования модифицированного оксидами металлов активированного угля марки Fil-trasorb 300 для извлечения из воды сульфаниловой кислоты и ионов меди.


Ключові слова


сорбция; модифицированный активированный уголь; структурно-сорбционные характеристики; сульфаниловая кислота; ионы меди; водоочистка

Повний текст:

PDF (Русский)

Посилання


Li Qimeng, et al., "Competition and enhancement effect in coremoval of atenolol and cooper be an easily regenerative magnetic cation exchange resin", Chemosphere, vol. 179, pp. 1-9, 2017.

C.-G. Lee, et al., "Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam", Chemosphere, vol. 166, pp. 203-211, 2017.

M. A. Yan, et al., "A bifunctional adsorbent with high area and cation exchange property for synergistic removal of tetracycline and Cu2+", Chemical Engineering Journal, vol. 258, pp. 26-33, 2014.

Chen Ling, Qiang Liu Fu, Xu Chao, Chen Tai-Peng, and Li Ai-Min, "An integrative technique based on synergistic coremoval an sequential recovery of copper and tetracy-cline with dual-functional chelating resin: roles of amine and carboxyl groups", Applied Materials and Interfaces, vol. 5, pp. 11808-11817, 2013.

Chen Taipeng, et al., "Insight into highly efficient coremoval of copper and pnitrophenol by a newly synthesized polyamine chelating resin from aqueous media: competition and enhancement effect upon site recognition", Environmental Science and Technology, vol. 47, pp. 13652-13660, 2013.

Han Jiaxi, Du Zhongjie, Zou Wei, Li Hangquan, Zhang Chen, "Insitu improved phenol adsorption at ionsenrichment inter-face of porous adsorbent for simultaneous removal of copper and phenol", Chemical Engineering Journal, vol. 262, pp. 571-578, 2015.

Fu Linchun, et al., "High-efficient technique to simultaneous removal of Cu (II), Ni (II) and tannic acid with magnetic resins: complex mechanism behind integrative applica-tion", Chemical Engineering Journal, vol. 263, pp. 83–91, 2015.

D. P. Siriwardena, M. Crimi, T. M. Holsen, C. Bellona, C. Divine, and E. Dickenson, "Changes in adsorption behavior of perfluo-rooctanoic acid and perfluorohexanesulfonic acid through chemically-facilitated surface modification of granular activated carbon", Environmental Engineering Science, vol. 36, pp. 453-465, 2019.

E. Kan, and S. G. Huling, "Effects of tem-perature and acidic pre-treatment on fenton-driven oxidation of mtbe-spent granular activated carbon", Environmental Science & Technology, vol. 43, pp. 1493-1499, 2009.

O. V. Zabneva, S. K. Smolin, N. A. Klimenko, O. G. Shvidenko, S. V. Grechanik, and A. V. Sinel'nikova, "Structural and sorption properties of activated carbon modified with iron oxides", Journal of Water Chemistry and Technology, vol. 34 (6), pp. 264-270, 2012.

A. Bhatnagar, W. Hogland, M. Marques, and M. Sillanpää, "An overview of the modification methods of activated carbon for its water treatment applications", Chemical En-gineering Journal, vol. 219, pp. 499-511, 2013.

Li Yiran, Zhang Jian, and Liu Hai, "In-situ modification of activated carbon with ethylenediaminetetraacetic acid disodium salt during phosphoric acid activation for enhancement of nickel removal", Powder Technology, vol. 325, pp. 113-120, 2018.

S. Amerkhanova, R. Shyapov, and Aitolkyn Uali, "The active carbon modified by industrial wastes in process of sorption concentration of toxic organic compounds and heavy metals ions", Colloid and Surface A: Physico-chemical and Engineering Aspects, vol. 532, pp. 36-40, 2017.

O. V. Zabneva, S. K. Smolin, N. A. Klimen-ko, O. G. Shvidenko, S. V. Grechanik, and A. V. Sinel'nikova, "Structural and sorption properties of activated carbon modified with iron oxides", Journal of Water Chemistry and Technology, vol. 34 (6), pp. 264-270, 2012.

M. N. Khan, and A. Sarwar, "Determination of the point zero charge of natural and processed adsorbents", Surface Review and Let-ters, vol. 14, pp. 461-469, 2007.

A. Bhatnagar, W. Hogland, M. Marques, and M. Sillanpää, "An overview of the mod-ification methods of activated carbon for its water treatment applications", Chemical En-gineering Journal, vol. 219, pp. 499-511, 2013.

Li Yiran, Zhang Jian, and Liu Hai, "In-situ modification of activated carbon with eth-ylenediaminetetraacetic acid disodium salt during phosphoric acid activation for en-hancement of nickel removal", Powder Technology, vol. 325, pp. 113-120, 2018.

S. Amerkhanova, R. Shyapov, and Aitolkyn Uali, "The active carbon modified by indus-trial wastes in process of sorption concentra-tion of toxic organic compounds and heavy metals ions", Colloid and Surface A: Physi-co-chemical and Engineering Aspects, vol. 532, pp. 36-40, 2017.

O. V. Zabneva, S. K. Smolin, N. A. Klimenko, O. G. Shvidenko, S. V. Grechanik, and A. V. Sinel'nikova, "Structural and sorption properties of activated carbon modified with iron oxides", Journal of Water Chemistry and Technology, vol. 34 (6), pp. 264-270, 2012.

M. N. Khan, and A. Sarwar, "Determination of the point zero charge of natural and pro-cessed adsorbents", Surface Review and Let-ters, vol. 14, pp. 461-469, 2007.


Пристатейна бібліографія ГОСТ


[1] Li Qimeng, et al., "Competition and enhancement effect in coremoval of atenolol and cooper be an easily regenerative magnetic cation exchange resin", Chemosphere, vol. 179, pp. 1-9, 2017.

[2] C.-G. Lee, et al., "Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam", Chemosphere, vol. 166, pp. 203-211, 2017.

[3] M. A. Yan, et al., "A bifunctional adsorbent with high area and cation exchange property for synergistic removal of tetracycline and Cu2+", Chemical Engineering Journal, vol. 258, pp. 26-33, 2014.

[4] Chen Ling, Qiang Liu Fu, Xu Chao, Chen Tai-Peng, and Li Ai-Min, "An integrative technique based on synergistic coremoval an sequential recovery of copper and tetracy-cline with dual-functional chelating resin: roles of amine and carboxyl groups", Applied Materials and Interfaces, vol. 5, pp. 11808-11817, 2013.

[5] Chen Taipeng, et al., "Insight into highly efficient coremoval of copper and pnitrophenol by a newly synthesized polyamine chelating resin from aqueous media: competition and enhancement effect upon site recognition", Environmental Science and Technology, vol. 47, pp. 13652-13660, 2013.

[6] Han Jiaxi, Du Zhongjie, Zou Wei, Li Hangquan, Zhang Chen, "Insitu improved phenol adsorption at ionsenrichment inter-face of porous adsorbent for simultaneous removal of copper and phenol", Chemical Engineering Journal, vol. 262, pp. 571-578, 2015.

[7] Fu Linchun, et al., "High-efficient technique to simultaneous removal of Cu (II), Ni (II) and tannic acid with magnetic resins: complex mechanism behind integrative applica-tion", Chemical Engineering Journal, vol. 263, pp. 83–91, 2015.

[8] D. P. Siriwardena, M. Crimi, T. M. Holsen, C. Bellona, C. Divine, and E. Dickenson, "Changes in adsorption behavior of perfluo-rooctanoic acid and perfluorohexanesulfonic acid through chemically-facilitated surface modification of granular activated carbon", Environmental Engineering Science, vol. 36, pp. 453-465, 2019.

[9] E. Kan, and S. G. Huling, "Effects of tem-perature and acidic pre-treatment on fenton-driven oxidation of mtbe-spent granular activated carbon", Environmental Science & Technology, vol. 43, pp. 1493-1499, 2009.

[10] O. V. Zabneva, S. K. Smolin, N. A. Klimenko, O. G. Shvidenko, S. V. Grechanik, and A. V. Sinel'nikova, "Structural and sorption properties of activated carbon modified with iron oxides", Journal of Water Chemistry and Technology, vol. 34 (6), pp. 264-270, 2012.

[11] A. Bhatnagar, W. Hogland, M. Marques, and M. Sillanpää, "An overview of the modification methods of activated carbon for its water treatment applications", Chemical En-gineering Journal, vol. 219, pp. 499-511, 2013.

[12] Li Yiran, Zhang Jian, and Liu Hai, "In-situ modification of activated carbon with ethylenediaminetetraacetic acid disodium salt during phosphoric acid activation for enhancement of nickel removal", Powder Technology, vol. 325, pp. 113-120, 2018.

[13] S. Amerkhanova, R. Shyapov, and Aitolkyn Uali, "The active carbon modified by industrial wastes in process of sorption concentration of toxic organic compounds and heavy metals ions", Colloid and Surface A: Physico-chemical and Engineering Aspects, vol. 532, pp. 36-40, 2017.

[14] O. V. Zabneva, S. K. Smolin, N. A. Klimenko, O. G. Shvidenko, S. V. Grechanik, and A. V. Sinel'nikova, "Structural and sorption properties of activated carbon modified with iron oxides", Journal of Water Chemistry and Technology, vol. 34 (6), pp. 264-270, 2012.

[15] M. N. Khan, and A. Sarwar, "Determination of the point zero charge of natural and processed adsorbents", Surface Review and Let-ters, vol. 14, pp. 461-469, 2007.





Copyright (c) 2020 Ирина Владимировна Косогина, Наталья Аркадиевна Клименко, Людмила Андреевна Савчина, Светлана Александровна Кирий, Игорь Михайлович Астрелин, Елена Александровна Самсони-Тодорова